Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.
نویسندگان
چکیده
Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.
منابع مشابه
Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced...
متن کاملA rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice
F-box proteins play diverse roles in regulating numerous physiological processes in plants. This study isolated a gene (OsFbx352) from rice encoding an F-box domain protein and characterized its role in seed germination. Expression of OsFbx352 was upregulated by abscisic acid (ABA). The transcripts of OsFbx352 were increased upon imbibition of rice seeds and the increase was markedly suppressed...
متن کاملThe Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination
Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and absc...
متن کاملGlucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis.
Both glucose and ABA play crucial roles in the regulation of seed germination and post-germination development. In Arabidopsis thaliana, up-regulation of ABA biosynthesis is suggested as one of the possible mechanisms mediating the glucose-induced delay in seed germination. Since the endogenous ABA level is controlled by the equilibrium between ABA biosynthesis and catabolism, we investigated h...
متن کاملتأثیر تنش سولفات مس و تنظیمکنندههای رشد بر شاخصهای جوانهزنی و تغییرات بیوشیمیایی بذر کلزا (Brassica napus)
The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2014